Author ORCID Identifier

0000-0001-5738-8606

Date of Award

2020

Document Type

Dissertation

Degree Name

Clinical Psychology, PhD

School

CAS

Faculty Advisor

David Gansler

Abstract

Objective: Cardiorespiratory fitness (CRF) is associated with decreased risk for cognitive decline. Accumulating evidence has linked CRF to more conserved white matter (WM) integrity and better cognitive performance in older adults. Additional research is needed to determine: (1) which WM tracts are most strongly related to CRF, (2) whether CRF-related benefits on WM translate to enhanced executive functioning (EF), and (3) if the neuroprotective effects of CRF are age-dependent. This study aimed to evaluate CRF as an intervention for modulating decreased WM integrity and EF in aging. Method: Participants were community-dwelling adults (N = 499; ages 20-85) from the open-access Nathan Kline Institute – Rockland Sample (NKIRS) with CRF (bike test), self-report of physical activity, diffusion tensor imaging (DTI), and EF data. Mixed-effect modeling tested the interaction between CRF and age on WM integrity (global and local microstructure). Significant WM tracts were retained for structural equation modeling to determine whether enhanced microstructure mediated a positive relationship between CRF and EF. Results: Among older participants (age  60), CRF was significantly related to stronger whole-brain (z-score slope = 0.11) and local WM integrity within five tracts (z-score slope range = 0.14 – 0.20). In support of the age-dependent hypothesis, the CRF–WM relationship was comparably weaker (z-score slopes  0.11) and more limited (one WM tract) in younger adults. CRF was more consistently related to WM than self-report of physical activity. Although CRF was linked to enhanced WM integrity, its potential benefits on EF were not directly observed. Conclusion: The findings highlight the importance of positive lifestyle factors, such as physical activity, in maintaining brain health in senescence. CRF may selectively preserve a collection of anterior and posterior WM connections related to visuomotor function.

Included in

Psychology Commons

COinS